عرض بسيط للتسجيلة

المؤلفHussain, Shahbaz
المؤلفAl-Hitmi, Mohammed
المؤلفKhaliq, Salman
المؤلفHussain, Asif
المؤلفSaqib, Muhammad Asghar
تاريخ الإتاحة2024-06-13T04:13:59Z
تاريخ النشر2019
اسم المنشورEnergies
المصدرScopus
المعرّفhttp://dx.doi.org/10.3390/en12112037
الرقم المعياري الدولي للكتاب19961073
معرّف المصادر الموحدhttp://hdl.handle.net/10576/56136
الملخصThis paper presents the optimization of fuel cost, emission of NOX, COX, and SOX gases caused by the generators in a thermal power plant using penalty factor approach. Practical constraints such as generator limits and power balance were considered. Two contemporary metaheuristic techniques, particle swarm optimization (PSO) and genetic algorithm (GA), have were simultaneously implemented for combined economic emission dispatch (CEED) of an independent power plant (IPP) situated in Pakistan for different load demands. The results are of great significance as the real data of an IPP is used and imply that the performance of PSO is better than that of GA in case of CEED for finding the optimal solution concerning fuel cost, emission, convergence characteristics, and computational time. The novelty of this work is the parallel implementation of PSO and GA techniques in MATLAB environment employed for the same systems. They were then compared in terms of convergence characteristics using 3D plots corresponding to fuel cost and gas emissions. These results are further validated by comparing the performance of both algorithms for CEED on IEEE 30 bus test bed.
راعي المشروعThe publication charges of this article were funded by Qatar National Library (QNL), Doha, Qatar.
اللغةen
الناشرMDPI AG
الموضوعCombined economic emission/environmental dispatch
Economic load dispatch
Emission dispatch
Genetic algorithm
Particle swarm optimization
Penalty factor approach
العنوانImplementation and comparison of particle swarm optimization and genetic algorithm techniques in combined economic emission dispatch of an independent power plant
النوعArticle
رقم العدد11
رقم المجلد12
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة