عرض بسيط للتسجيلة

المرشدHalabi, Osama
المؤلفELTANBOULY, SOMAYA SALAH
تاريخ الإتاحة2024-07-08T07:23:50Z
تاريخ النشر2024-06
معرّف المصادر الموحدhttp://hdl.handle.net/10576/56502
الملخصThe Metaverse has captured global attention as a potential frontier for the internet's future. Avatar actions within this immersive digital realm mirror real-world behaviors, introducing safety concerns like cyberbullying and harmful interactions. A solution focusing on avatar action recognition and abnormal behavior detection has been proposed to address these issues. A dataset containing normal and abnormal action skeleton data was collected by extracting avatar skeleton data. However, our system does not depend solely on avatar data. To build a generalizable system, knowledge from human actions was transferred to comprehend avatars' behavior in the Metaverse. The models used proved effective in detecting the actions of different types of avatars. Furthermore, the anomaly detection model of the avatars' actions exhibited performance akin to human anomaly detection systems proposed in the literature. This affirms the feasibility of detecting avatar actions and abnormal behaviors, marking a significant stride toward ensuring safety and security within the Metaverse. The proposed solution is a crucial step in making the Metaverse a safe and secure place for all users.
اللغةen
الموضوعMetaverse
Avatar Actions
Anomaly Detection
Human Action Transfer Learning
Avatar Safety
Metaverse Security
Motion Capture (Skeleton Data)
العنوانTOWARDS A SAFER METAVERSE: ANOMALY DETECTION IN AVATAR ACTIONS USING HUMAN ACTION TRANSFER LEARNING
النوعMaster Thesis
التخصصComputer Science and Engineering
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة