Show simple item record

AuthorAzmy, Sherif B.
AuthorZorba, Nizar
AuthorHassanein, Hossam S.
Available date2024-07-14T07:57:22Z
Publication Date2020
Publication NameIEEE Internet of Things Journal
ResourceScopus
Identifierhttp://dx.doi.org/10.1109/JIOT.2020.2994556
ISSN23274662
URIhttp://hdl.handle.net/10576/56614
AbstractMobile crowdsensing (MCS) is a paradigm that exploits the presence of a crowd of moving human participants to acquire, or generate, data from their environment. As a part of the Internet-of-Things (IoT) paradigm, MCS serves the quest for a more efficient operation of a smart city. Big data techniques employed on this data produce inferences about the participants' environment, the smart city. However, sufficient amounts of data are not always available. Sometimes, the available data are scarce as it is obtained at different times, locations, and from different MCS participants who may not be present. As a consequence, the scale of data acquired may be small and susceptible to errors. In such scenarios, the MCS system requires techniques that acquire reliable inferences from such limited data sets. To that end, we resort to small data (SD) techniques that are relevant for scarce and erroneous scenarios. In this article, we discuss SD and propose schemes to tackle the problems associated with such limited data sets, in the context of the smart city. We propose two novel quality metrics: 1) MAD quality metric (MAD-Q) and 2) MAD bootstrap quality metric (MADBS-Q), to deal with SD, focusing on evaluating the quality of a data set within MCS. We also propose an MCS-specific coverage metric that combines the spatial dimension with MAD-Q and MADBS-Q. We show the performance of all the presented techniques through closed-form mathematical expressions, with which simulation results were found to be consistent.
SponsorManuscript received January 10, 2020; revised April 11, 2020; accepted April 27, 2020. Date of publication May 14, 2020; date of current version November 12, 2020. This work was supported by the Natural Sciences and Engineering Research Council of Canada under Grant RGPIN-2019-05667.(Corresponding author: Nizar Zorba.) Sherif B. Azmy is with the Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada (e-mail: sherif.azmy@queensu.ca).
Languageen
PublisherInstitute of Electrical and Electronics Engineers Inc.
SubjectData quality
Internet of Things (IoT)
IoT architectures
IoT-based services
mobile crowdsensing (MCS)
small data (SD)
TitleQuality Estimation for Scarce Scenarios within Mobile Crowdsensing Systems
TypeArticle
Pagination10955-10968
Issue Number11
Volume Number7
dc.accessType Abstract Only


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record