عرض بسيط للتسجيلة

المؤلفRamadan, Abdelrahman
المؤلفElbery, Ahmed
المؤلفZorba, Nizar
المؤلفHassanein, Hossam S.
تاريخ الإتاحة2024-07-14T07:57:22Z
تاريخ النشر2020
اسم المنشورIEEE International Conference on Communications
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ICC40277.2020.9149233
الرقم المعياري الدولي للكتاب15503607
معرّف المصادر الموحدhttp://hdl.handle.net/10576/56618
الملخصTraffic forecasting is imperative to Intelligent Transportation Systems (ITS), and it has always been considered as a challenging research topic, due to the complex topological structure of the urban road network and the temporal stochastic nature of dynamic change. Popular sports events attract vast numbers of spectators travelling to the event, which will have a substantial effect on ITS, showing peaks on the network that can collapse a smart city's ITS. In this paper, we tackle traffic forecasting and use the Doha network in Qatar and the FIFA World Cup 2022 (FWC 2022) event as a case study. We propose a novel technique for embedding road network graphs into a Temporal-Graph Convolutional Network. The embedding process includes a modification to the graph weights based on graph theory and the properties of the line graph. Extensive simulations are carried out on a real-world calibrated dataset from Doha's road network. Our Temporal Line Graph Convolutional Network (TLGCN) proposal shows outstanding performance when compared to state-of-the-art techniques, not only for huge special events but also for the regular daily traffic.
راعي المشروعACKNOWLEDGMENT This work was made possible by NPRP grant NPRP 9-185-2-096 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعLine Graphs
Spatiotemporal Dependence
T-GCN
Temporal Line Graph Convolutional Network
TLGCN
Traffic Forecasting
العنوانTraffic Forecasting using Temporal Line Graph Convolutional Network: Case Study
النوعConference Paper
رقم المجلد2020-June
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة