• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RES-EV: Identifying EV-Households under High AC Load Using a Residual-Based Model

    Thumbnail
    Date
    2024
    Author
    Aly, Hussein
    Al-Ali, Abdulaziz
    Al-Ali, Abdulla
    Malluhi, Qutaibah
    Metadata
    Show full item record
    Abstract
    This paper introduces a novel residual-based model to identify households with Battery Electric Vehicles (EVs) under high Air Conditioning (AC) load. The considerable energy demands of AC units can obscure charging events for EVs. In this work we propose a residual based model which leverages the distinctive characteristics of EV charging patterns, marked by unpredictable spikes in energy consumption, and the more predictable nature of AC load. Our proposed approach involves training a lightweight forecasting model to predict overall household consumption and utilizes the residuals of this model for identifying household with EVs. The residual-based model, ResEV-AR, demonstrated a substantial advantage in F1 score (5.8% and 7.32%) compared to state-of-the-art models such as EVS and KBF, respectively. Additionally, a simpler residual model, ResEV-SRM, exhibited a 3.5% F1 score advantage over EVS, coupled with an impressive 11-fold reduction in computation time.
    DOI/handle
    http://dx.doi.org/10.1109/ENERGYCON58629.2024.10488793
    http://hdl.handle.net/10576/56749
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Information Intelligence [‎98‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video