عرض بسيط للتسجيلة

المؤلفAly, Hussein
المؤلفAl-Ali, Abdulaziz
المؤلفAl-Ali, Abdulla
المؤلفMalluhi, Qutaibah
تاريخ الإتاحة2024-07-17T07:14:43Z
تاريخ النشر2024
اسم المنشور2024 IEEE 8th Energy Conference, ENERGYCON 2024 - Proceedings
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ENERGYCON58629.2024.10488793
معرّف المصادر الموحدhttp://hdl.handle.net/10576/56749
الملخصThis paper introduces a novel residual-based model to identify households with Battery Electric Vehicles (EVs) under high Air Conditioning (AC) load. The considerable energy demands of AC units can obscure charging events for EVs. In this work we propose a residual based model which leverages the distinctive characteristics of EV charging patterns, marked by unpredictable spikes in energy consumption, and the more predictable nature of AC load. Our proposed approach involves training a lightweight forecasting model to predict overall household consumption and utilizes the residuals of this model for identifying household with EVs. The residual-based model, ResEV-AR, demonstrated a substantial advantage in F1 score (5.8% and 7.32%) compared to state-of-the-art models such as EVS and KBF, respectively. Additionally, a simpler residual model, ResEV-SRM, exhibited a 3.5% F1 score advantage over EVS, coupled with an impressive 11-fold reduction in computation time.
راعي المشروعThis publication was made possible by NPRP grant 12C-0814-190012 from the Qatar National Research Fund (a member of Qatar Foundation). The findings herein reflect the work and are solely the responsibility of the authors.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعbattery electric vehicles (EVs)
residential load profile
smart grid
smart meter
العنوانRES-EV: Identifying EV-Households under High AC Load Using a Residual-Based Model
النوعConference Paper
الصفحات-
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة