Biophysical model of coral population connectivity in the Arabian/Persian Gulf
Author | Cavalcante, Geórgenes |
Author | Vieira, Filipe |
Author | Mortensen, Jonas |
Author | Ben-Hamadou, Radhouane |
Author | Range, Pedro |
Author | Goergen, Elizabeth A. |
Author | Campos, Edmo |
Author | Riegl, Bernhard M. |
Available date | 2024-07-18T10:51:44Z |
Publication Date | 2020-01-01 |
Publication Name | Advances in Marine Biology |
Identifier | http://dx.doi.org/10.1016/bs.amb.2020.07.001 |
Citation | Cavalcante, G., Vieira, F., Mortensen, J., Ben-Hamadou, R., Range, P., Goergen, E. A., ... & Riegl, B. M. (2020). Biophysical model of coral population connectivity in the Arabian/Persian Gulf. In Advances in Marine Biology (Vol. 87, No. 1, pp. 193-221). Academic Press. |
ISBN | [9780128215296] |
ISSN | 00652881 |
Abstract | The coral reef ecosystems of the Arabian/Persian Gulf (the Gulf) are facing profound pressure from climate change (extreme temperatures) and anthropogenic (land-use and population-related) stressors. Increasing degradation at local and regional scales has already resulted in widespread coral cover reduction. Connectivity, the transport and exchange of larvae among geographically separated populations, plays an essential role in recovery and maintenance of biodiversity and resilience of coral reef populations. Here, an oceanographic model in 3-D high-resolution was used to simulate particle dispersion of “virtual larvae.” We investigated the potential physical connectivity of coral reefs among different regions in the Gulf. Simulations reveal that basin-scale circulation is responsible for broader spatial dispersion of the larvae in the central region of the Gulf, and tidally-driven currents characterized the more localized connectivity pattern in regions along the shores in the Gulf's southern part. Results suggest predominant self-recruitment of reefs with highest source and sink ratios along the Bahrain and western Qatar coasts, followed by the south eastern Qatar and continental Abu Dhabi coast. The central sector of the Gulf is suggested as recruitment source in a stepping-stone dynamics. Recruitment intensity declined moving away from the Straits of Hormuz. Connectivity varied in models assuming passive versus active mode of larvae movement. This suggests that larval behaviour needs to be taken into consideration when establishing dispersion models, and establishing conservation strategies for these vulnerable ecosystems. |
Sponsor | This work was made possible by NPRP grant # [10-0205-170342] from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors. This work was partially supported by the American University of Sharjah [grant number FRG19-M-G74]. |
Language | en |
Publisher | Academic Press |
Subject | Arabian/Persian Gulf Biophysical model Coral reef Larval transport Modelling Population connectivity |
Type | Book chapter |
Pagination | 193-221 |
Issue Number | 1 |
Volume Number | 87 |
Check access options
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Biological & Environmental Sciences [920 items ]