عرض بسيط للتسجيلة

المؤلفAldoseri, Abdulaziz
المؤلفAl-Khalifa, Khalifa N.
المؤلفHamouda, Abdel M.
تاريخ الإتاحة2024-08-01T10:39:10Z
تاريخ النشر2023
اسم المنشورApplied Sciences (Switzerland)
المصدرScopus
الرقم المعياري الدولي للكتاب20763417
معرّف المصادر الموحدhttp://dx.doi.org/10.3390/app13127082
معرّف المصادر الموحدhttp://hdl.handle.net/10576/57383
الملخصThe use of artificial intelligence (AI) is becoming more prevalent across industries such as healthcare, finance, and transportation. Artificial intelligence is based on the analysis of large datasets and requires a continuous supply of high-quality data. However, using data for AI is not without challenges. This paper comprehensively reviews and critically examines the challenges of using data for AI, including data quality, data volume, privacy and security, bias and fairness, interpretability and explainability, ethical concerns, and technical expertise and skills. This paper examines these challenges in detail and offers recommendations on how companies and organizations can address them. By understanding and addressing these challenges, organizations can harness the power of AI to make smarter decisions and gain competitive advantage in the digital age. It is expected, since this review article provides and discusses various strategies for data challenges for AI over the last decade, that it will be very helpful to the scientific research community to create new and novel ideas to rethink our approaches to data strategies for AI.
اللغةen
الناشرMDPI
الموضوعArtificial Intelligence (AI)
challenges and opportunities
data strategies and learning approaches
العنوانRe-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges
النوعArticle Review
رقم العدد12
رقم المجلد13
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة