Abstract | The non-biodegradable nature of waste emitted from the agriculture and industrial sector contaminates freshwater reserves. Fabrication of highly effective and low-cost heterogeneous photocatalysts is crucial for sustainable wastewater treatment. The present research study aims to construct a novel photocatalyst using a facile ultrasonication-assisted hydrothermal method. Metal sulphides and doped carbon support materials work well to fabricate hybrid sunlight active systems that efficiently harness green energy and are eco-friendly. Boron-doped graphene oxide-supported copper sulphide nanocomposite was synthesized hydrothermally and was assessed for sunlight-assisted photocatalytic degradation of methylene blue dye. BGO/CuS was characterized through various techniques such as SEM-EDS, XRD, XPS, FTIR, BET, PL, and UV-Vis DRS spectroscopy. The bandgap of BGO-CuS was found to be 2.51 eV as evaluated through the tauc plot method. The enhanced dye degradation was obtained at optimum conditions of pH = 8, catalyst concentration (20 mg/100 mL for BGO-CuS), oxidant dose (10 mM for BGO-CuS), and optimum time of irradiation was 60 min. The novel boron-doped nanocomposite effectively degraded methylene blue up to 95% under sunlight. Holes and hydroxyl radicals were the key reactive species. Response surface methodology was used to analyze the interaction among several interacting parameters to remove dye methylene blue effectively. |