Antibacterial Polyvinylchloride Pre-Treated by Barrier Plasma
Author | Novák, Igor |
Author | Popelka, Anton |
Author | Matyašovskỳ, Ján |
Author | Jurkovič, Peter |
Author | Lehockỳ, Marián |
Author | Vesel, Alenka |
Author | Šoltés, Ladislav |
Author | Asadinezhad, Ahmad |
Available date | 2024-08-15T06:46:37Z |
Publication Date | 2010 |
Publication Name | News in Chemistry, Biochemistry and Biotechnology: State of the Art and Prospects of Development |
Resource | Scopus |
Abstract | A multistep physicochemical approach making use of plasma technology combined with wet chemistry has fueled considerable interest in delivery of surface-active antiadherence materials. In the first step of the approach, concerning an inherent lack of befitting functional groups on pristine substrate, plasma treatment at low temperature and atmospheric pressure has been substantiated to be productive in yielding reactive entities on the surface [1, 5]. The highlights the functionality of the adopted multistep physicochemical approach to bind polysaccharide species onto the medical-grade PVC surface. DCSBD plasma is capable of raising roughness, surface free energy, and introducing oxygen-containing functionalities anchored onto the surface. A structured poly(acrylic acid) brush of high graft density is synthesized using surface-initiated approach to further improve hydrophilicity and develop a stable brush-like assembly to yield a platform for biomolecular binding. In vitro bacterial adhesion and biofilm formation assays indicate incapability of single chitosan layer in hindering the adhesion of Staphylococcus aureus bacterial strain. Chitosan could retard Escherichia coli adhesion and plasma treated and graft copolymerized samples are found effective to diminish the adherence degree of Escherichia Coli. |
Language | en |
Publisher | Nova Science Publishers, Inc. |
Subject | Atmospheric pressure Biomaterials Chitosan Escherichia coli Free energy Grafting (chemical) Plasma applications Temperature Bacterial adhesion Bacterial strains Biofilm formation Biomolecular binding Plasma technology Poly(acrylic acid ) Staphylococcus aureus Surface free energy Adhesion |
Type | Book chapter |
Pagination | 35-44 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Center for Advanced Materials Research [1378 items ]