عرض بسيط للتسجيلة

المؤلفKhan, Muhammad Asif
المؤلفMenouar, Hamid
المؤلفHamila, Ridha
تاريخ الإتاحة2024-08-21T09:49:58Z
تاريخ النشر2024
اسم المنشورProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
المصدرScopus
الرقم المعياري الدولي للكتاب21845921
معرّف المصادر الموحدhttp://dx.doi.org/10.5220/0012414700003660
معرّف المصادر الموحدhttp://hdl.handle.net/10576/57851
الملخصRecent advances in deep learning techniques have achieved remarkable performance in several computer vision problems. A notably intuitive technique called Curriculum Learning (CL) has been introduced recently for training deep learning models. Surprisingly, curriculum learning achieves significantly improved results in some tasks but marginal or no improvement in others. Hence, there is still a debate about its adoption as a standard method to train supervised learning models. In this work, we investigate the impact of curriculum learning in crowd counting using the density estimation method. We performed detailed investigations by conducting 112 experiments using six different CL settings using eight different crowd models. Our experiments show that curriculum learning improves the model learning performance and shortens the convergence time.
راعي المشروعThis publication was made possible by the PDRA award PDRA7-0606-21012 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرScience and Technology Publications, Lda
الموضوعCNN
Crowd Counting
Curriculum Learning
Density Estimation
العنوانCurriculum for Crowd Counting: Is It Worthy?
النوعConference Paper
الصفحات583-590
رقم المجلد3
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة