عرض بسيط للتسجيلة

المؤلفKhan, Muhammad Asif
المؤلفMenouar, Hamid
المؤلفHamila, Ridha
تاريخ الإتاحة2024-08-21T09:49:58Z
تاريخ النشر2024
اسم المنشورProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
المصدرScopus
الرقم المعياري الدولي للكتاب21845921
معرّف المصادر الموحدhttp://dx.doi.org/10.5220/0012547900003660
معرّف المصادر الموحدhttp://hdl.handle.net/10576/57852
الملخصMost state-of-the-art crowd counting methods use color (RGB) images to learn the density map of the crowd. However, these methods often struggle to achieve higher accuracy in densely crowded scenes with poor illumination. Recently, some studies have reported improvement in the accuracy of crowd counting models using a combination of RGB and thermal images. Although multimodal data can lead to better predictions, multimodal data might not be always available beforehand. In this paper, we propose the use of generative adversarial networks (GANs) to automatically generate thermal infrared (TIR) images from color (RGB) images and use both to train crowd counting models to achieve higher accuracy. We use a Pix2Pix GAN network first to translate RGB images to TIR images. Our experiments on several state-of-the-art crowd counting models and benchmark crowd datasets report significant improvement in accuracy.
راعي المشروعThis publication was made possible by the PDRA award PDRA7-0606-21012 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرScience and Technology Publications, Lda
الموضوعCNN
Crowd Counting
Density Estimation
Multimodal
RGB
Thermal
العنوانMultimodal Crowd Counting with Pix2Pix GANs
النوعConference Paper
الصفحات806-813
رقم المجلد3
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة