Comparison of methods for estimating density and population trends for low-density Asian bears
View/ Open
Publisher version (Check access options)
Check access options
Date
2022-06-30Author
Dana J., MorinBoulanger, John
Bischof, Richard
Lee, David C.
Ngoprasert, Dusit
Fuller, Angela K.
McLellan, Bruce
Steinmetz, Robert
Sharma, Sandeep
Garshelis, Dave
Gopalaswamy, Arjun
Nawaz, Muhammad Ali
Karanth, Ullas
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Populations of bears in Asia are vulnerable to extinction and effective monitoring is critical to measure and direct conservation efforts. Population abundance (local density) or growth (λ) are the most sensitive metrics to change. We discuss the value in implementing spatially explicit capture-recapture (SCR), the current gold standard for density estimation, and open population SCR (OPSCR) to monitor changes in density over time. We provide guidance for designing studies to provide estimates with sufficient power to detect changes. Because of the wide availability of camera traps and interest in their use, we consider six density estimation methods and their extensions developed for use with camera traps, with specific consideration of assumptions and applications for monitoring Asian bears. We conducted a power analysis to calculate the precision in estimates needed to detect changes in populations with reference to IUCN Red List criteria. We performed a systematic review of empirical studies implementing camera trap abundance estimation methods and considered sample sizes, effort, and model assumptions required to achieve adequate precision for population monitoring. We found SCR and OPSCR, reliant on “marked” individuals, are currently the only methods with enough power to reliably detect even moderate to major (20–80%) declines. Camera trap methods with unmarked individuals rarely achieved precision sufficient to detect even large declines (80–90%), although with some exceptions (e.g., situations with moderate population densities, large number of sampling sites, or inclusion of ancillary local telemetry data. We describe additional estimation options including line transects, direct observations, monitoring age-specific survival and reproductive rates, and hybrid/integrated methodologies that may have potential to work for some Asian bear populations. We conclude monitoring changes in abundance or density is possible for most Asian bear populations but will require collaboration among researchers over broad spatial extents and extensive financial investment to overcome biological and logistical constraints. We strongly encourage practitioners to consider study design and sampling effort required to meet objectives by conducting simulations, power analyses, and assumption checks prior to implementing monitoring efforts, and reporting standardized dispersion measures such as coefficients of variation to allow for assessment of precision. Our guidance is relevant to other low-density and wide-ranging species.
Collections
- Biological & Environmental Sciences [920 items ]