• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Er Doped III-Nitride Semiconductors

    Thumbnail
    View/Open
    Er Doped Iii-Nitride Semiconductors.pdf (4.602Mb)
    Date
    2017-06
    Author
    Zakaria, Yahya
    Metadata
    Show full item record
    Abstract
    Erbium ions (Er3+) doped in a solid material enables the intra 4f shell transitions from its first excited state (4I13/2) to the ground state (4I15/2). The intra-4f shell transition at 1540 nm is of exceptional interest as the wavelength matches the minimum loss region of silica fibers used in optical communications. Aluminium nitride (AlN) as host material for Erbium (Er) has attracted a lot of interest due to its physical and chemical properties such as the wide bandgap. Metal-Organic Chemical Vapor Deposition (MOCVD) is the most advanced state-of-art growth technique which provides both high quality single crystal thin film deposition capability and high growth rate. MOCVD is a versatile technique that widely used in research laboratories and in industrial factories. In this thesis, the effects of Er flux on MOCVD grown Er:AlN properties were investigated using different characterization techniques such as X-ray Diffraction (XRD), Photoluminescence (PL) Spectroscopy, Secondary Ion Mass Spectroscopy (SIMS), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). XRD θ-2θ scans showed strong peak (002) for AlN and sapphire substrate (Al2O3), and the absence of any secondary phase for all samples. Rocking curve scans showed that increasing the Er flux increases the full width at half maximum (FWHM) of the symmetric (002) planes for AlN:Er. Surface imaging studies showed that increasing Er flux increases the surface roughness. SIMS profiles revealed that Er is uniformly distributed throughout the doped layers and enabled the direct measurement of the doped layer thickness using optical profiler. XPS exhibited the surface quantitative measurement of Aluminium, Nitrogen, Oxygen, and Carbon. PL measurements revealed that increasing the Er flux increases the 1.54μm emission intensity.
    DOI/handle
    http://hdl.handle.net/10576/5803
    Collections
    • Materials Science & Technology [‎63‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video