عرض بسيط للتسجيلة

المؤلفSolorzano, German
المؤلفPlevris, Vagelis
تاريخ الإتاحة2024-10-02T05:59:49Z
تاريخ النشر2023
اسم المنشورAdvances in Civil Engineering
المصدرScopus
الرقم المعياري الدولي للكتاب16878086
معرّف المصادر الموحدhttp://dx.doi.org/10.1155/2023/7953869
معرّف المصادر الموحدhttp://hdl.handle.net/10576/59653
الملخصReinforced concrete (RC) shear walls macroscopic models are simplified strategies able to simulate the complex nonlinear behavior of RC shear walls to some extent, but their efficacy and robustness are limited. In contrast, microscopic models are sophisticated finite element method (FEM) models that are far more accurate and reliable. However, their elevated computational cost turns them unfeasible for most practical applications. In this study, a data-driven surrogate model for analyzing RC shear walls is developed using deep neural networks (DNNs). The surrogate model is trained with thousands of FEM simulations to predict the characteristic curve obtained when a static nonlinear pushover analysis is performed. The surrogate model is extensively tested and found to exhibit a high degree of accuracy in its predictions while being extremely faster than the detailed FEM analysis. The complete framework that made this study possible is provided as an open-source project. The project is developed in Python and includes a parametric FEM model of an RC shear wall in OpenSeesPy, the training and validation of the DNN model in TensorFlow, and an application with an interactive graphical user interface to test the methodology and visualize the results.
اللغةen
الناشرHindawi Limited
الموضوعDeep neural networks
Machine learning
Artificial intelligence
Modeling
Simulation
Framework
Open-source
RC shear walls
Structural engineering
Civil engineering
العنوانAn Open-Source Framework for Modeling RC Shear Walls Using Deep Neural Networks
النوعArticle
رقم المجلد2023
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة