عرض بسيط للتسجيلة

المؤلفBen Seghier, Mohamed El Amine
المؤلفPlevris, Vagelis
المؤلفSolorzano, German
تاريخ الإتاحة2024-10-02T05:59:51Z
تاريخ النشر2022
اسم المنشورWorld Congress in Computational Mechanics and ECCOMAS Congress
المصدرScopus
الرقم المعياري الدولي للكتاب26966999
معرّف المصادر الموحدhttp://dx.doi.org/10.23967/eccomas.2022.285
معرّف المصادر الموحدhttp://hdl.handle.net/10576/59679
الملخصIn this paper, the potential of building more accurate and robust models for the prediction of the ultimate pure bending capacity of steel circular tubes using artificial intelligence techniques is investigated. Therefore, a database consisting of 104 tests for fabricated and cold-formed steel circular tubes are collected from the open literature and used to train and validate the proposed data-driven approaches which include the Random Forest methodology in two variants: The original version in which the control parameters are manually updated, and an enhanced RF-PSO variant, where Particle Swarm Optimization is used for optimizing these parameters. The data set has four input parameters, namely the tube thickness, tube diameter, yield strength of steel and steel elasticity modulus, while the ultimate pure bending capacity is considered as the target output variable. The obtained results are compared to the real test values through various statistical indicators such as the root mean square error and the coefficient of determination. The results indicate that the proposed enhanced model can provide an accurate solution for modelling the complex behavior of steel circular tubes under pure bending conditions.
اللغةen
الناشرScipedia S.L.
الموضوعArtificial intelligence
Circular tubes
Statistical index
Taylor Diagram
Ultimate pure bending capacity
العنوانUSING ARTIFICIAL INTELLIGENCE TECHNIQUES FOR THE ACCURATE ESTIMATION OF THE ULTIMATE PURE BENDING OF STEEL CIRCULAR TUBES
النوعConference Paper
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة