عرض بسيط للتسجيلة

المؤلفBakas, Nikolaos P.
المؤلفPlevris, Vagelis
المؤلفLangousis, Andreas
المؤلفChatzichristofis, Savvas A.
تاريخ الإتاحة2024-10-02T05:59:51Z
تاريخ النشر2022
اسم المنشورStochastic Environmental Research and Risk Assessment
المصدرScopus
الرقم المعياري الدولي للكتاب14363240
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s00477-021-02025-w
معرّف المصادر الموحدhttp://hdl.handle.net/10576/59683
الملخصOptimization algorithms appear in the core calculations of numerous Artificial Intelligence (AI) and Machine Learning methods and Engineering and Business applications. Following recent works on AI's theoretical deficiencies, a rigour context for the optimization problem of a black-box objective function is developed. The algorithm stems directly from the theory of probability, instead of presumed inspiration. Thus the convergence properties of the proposed methodology are inherently stable. In particular, the proposed optimizer utilizes an algorithmic implementation of the n-dimensional inverse transform sampling as a search strategy. No control parameters are required to be tuned, and the trade-off among exploration and exploitation is, by definition, satisfied. A theoretical proof is provided, concluding that when falling into the proposed framework, either directly or incidentally, any optimization algorithm converges. The numerical experiments verify the theoretical results on the efficacy of the algorithm apropos reaching the sought optimum.
راعي المشروعThe contribution of Andreas Langousis has been conducted within the project PerManeNt, which has been co-financed by the European Regional Development Fund of the European Union and Greek National Funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE - INNOVATE (project code: T2EDK-04177).
اللغةen
الناشرSpringer
الموضوعBlack-box function
Global convergence
Inverse transform sampling
Stochastic optimization
العنوانITSO: a novel inverse transform sampling-based optimization algorithm for stochastic search
النوعArticle
الصفحات67-76
رقم العدد1
رقم المجلد36
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة