عرض بسيط للتسجيلة

المؤلفGeetha, Mithra
المؤلفBonthula, Sumalatha
المؤلفAl-Maadeed, Somaya
المؤلفAl-Lohedan, Hamad
المؤلفRajabathar, Jothi Ramalingam
المؤلفArokiyaraj, Selvaraj
المؤلفSadasivuni, Kishor Kumar
تاريخ الإتاحة2024-10-13T09:56:07Z
تاريخ النشر2023-09-01
اسم المنشورWater (Switzerland)
المعرّفhttp://dx.doi.org/10.3390/w15183293
الاقتباسGeetha, M., Bonthula, S., Al-Maadeed, S., Al-Lohedan, H., Rajabathar, J. R., Arokiyaraj, S., & Sadasivuni, K. K. (2023). Research trends in smart cost-effective water quality monitoring and modeling: special focus on artificial intelligence. Water, 15(18), 3293.‏
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85172720420&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60082
الملخصNumerous conventional methods are available for analyzing various water quality parameters to determine the water quality index. However, ongoing surveillance is necessary for large bodies of water. A water quality monitoring system supports a robust surface and groundwater ecosystem. Various tactics are used to improve aquatic habitats: identification of the precise chemical pollutants released into the aquatic environment; advancements in assessing ecological effects; and working on ways to enhance water quality through informing the public, communities, businesses, etc. In order to save the marine ecosystem and those who entirely depend on these enormous bodies of water, it is also crucial to continuously handle many data sets of water quality metrics. To predict the water quality index, this review paper provides an overview of water quality monitoring, the modeling and numerous sensors employed, and various artificial intelligence approaches. Various water quality models were proposed to assess pH, a few components, and alkalinity. Additionally, handling raw information for surface and groundwater quality metrics was studied using artificial intelligence techniques like neural networks.
اللغةen
الناشرMultidisciplinary Digital Publishing Institute (MDPI)
الموضوعartificial intelligence
groundwater
modeling
monitoring
surface water
water quality index
water quality parameters
العنوانResearch Trends in Smart Cost-Effective Water Quality Monitoring and Modeling: Special Focus on Artificial Intelligence
النوعArticle Review
رقم العدد18
رقم المجلد15
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة