عرض بسيط للتسجيلة

المؤلفRiaz, Muhammad Sajid
المؤلفQureshi, Haneya Naeem
المؤلفMasood, Usama
المؤلفRizwan, Ali
المؤلفAbu-Dayya, Adnan
المؤلفImran, Ali
تاريخ الإتاحة2024-10-20T10:43:19Z
تاريخ النشر2022
اسم المنشورIEEE Access
المصدرScopus
الرقم المعياري الدولي للكتاب21693536
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ACCESS.2022.3185639
معرّف المصادر الموحدhttp://hdl.handle.net/10576/60224
الملخصDiminishing viability of manual fault diagnosis in the increasingly complex emerging cellular network has motivated research towards artificial intelligence (AI)-based fault diagnosis using the minimization of drive test (MDT) reports. However, existing AI solutions in the literature remain limited to either diagnosis of faults in a single base station only or the diagnosis of a single fault in a multiple BS scenario. Moreover, lack of robustness to MDT reports spatial sparsity renders these solutions unsuitable for practical deployment. To address this problem, in this paper we present a novel framework named Hybrid Deep Learning-based Root Cause Analysis (HYDRA) that uses a hybrid of convolutional neural networks, extreme gradient boosting, and the MDT data enrichment techniques to diagnose multiple faults in a multiple base station network. Performance evaluation under realistic and extreme settings shows that HYDRA yields an accuracy of 93% and compared to the state-of-the-art fault diagnosis solutions, HYDRA is far more robust to MDT report sparsity.
راعي المشروعThis work was supported in part by the National Science Foundation (NSF) under Grant 1619346 and Grant 1730650, and in part by the Qatar National Research Fund (QNRF) under Grant NPRP12-S 0311-190302.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعcellular data sparsity
data enrichment
hybrid deep learning
image inpainting
minimization of drive tests
multi-fault diagnosis
network automation
radio environment maps
Root cause analysis
self healing
العنوانA Hybrid Deep Learning-Based (HYDRA) Framework for Multifault Diagnosis Using Sparse MDT Reports
النوعArticle
الصفحات67140-67151
رقم المجلد10
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة