• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental analysis of free-standing and substrate-constrained Ga-doped ZnO nanostructured thermoelectric films

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    PIIS2405844024158677.pdf (2.364Mb)
    Date
    2024-11-15
    Author
    Aicha S., Lemine
    Bhadra, Jolly
    Popelka, Anton
    Maurya, Muni Raj
    Sadasivuni, Kishor Kumar
    Shakoor, Rana Abdul
    Zubair, Ahmad
    Al-Thani, Noora J.
    Hasan, Anwarul
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Developing thermoelectric films without substrates—free-standing films—eliminates substrate-induced effects on performance and meets the flexibility requirements of emerging wearable thermoelectric applications. This study investigates Gallium-doped Zinc Oxide (GZO), composed of abundant and non-toxic elements, to fabricate a substrate-free GZO film via 3D printing and compares its structural, chemical, and thermoelectric properties with those of a substrate-constrained GZO film produced through chemical deposition. Both films exhibited uniform crystal structures and phase purity; however, the substrate-constrained film displayed additional diffraction peaks, suggesting potential substrate interactions. The 3D-printed free-standing film effectively eliminated the tensile stresses observed in the substrate-constrained film. FE-STEM analysis revealed nanostructures with homogeneous elemental distribution in both films, though the substrate-constrained film showed discontinuities, such as pores, likely caused by post-deposition annealing treatment. XPS analysis highlighted differences in chemical states and elemental compositions between the films, influenced by fabrication methods, substrate-induced stresses, and surface energy mismatches. The free-standing GZO film developed through 3D printing exhibited a more balanced incorporation of Zn and O, as it was not subject to substrate or post-deposition annealing constraints. Consequently, it demonstrated a 14 % increase in electrical conductivity and a 91 % improvement in the Seebeck coefficient compared to the substrate-constrained film, resulting in a higher room-temperature power factor of 261 nW/m·K2. These findings underscore the potential of 3D-printed free-standing GZO films to advance thermoelectric applications, offering a promising alternative to overcome the challenges of substrate-constrained films and further drive innovation in the field.
    URI
    https://www.sciencedirect.com/science/article/pii/S2405844024158677
    DOI/handle
    http://dx.doi.org/10.1016/j.heliyon.2024.e39836
    http://hdl.handle.net/10576/60939
    Collections
    • Biomedical Research Center Research [‎786‎ items ]
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video