Show simple item record

AuthorFarooq, Muhammad Junaid
AuthorGhazzai, Hakim
AuthorKadri, Abdullah
Available date2024-11-21T05:33:41Z
Publication Date2016-09-12
Publication NameIEEE Wireless Communications and Networking Conference, WCNC
Identifierhttp://dx.doi.org/10.1109/WCNC.2016.7564929
CitationM. J. Farooq, H. Ghazzai and A. Kadri, "A stochastic geometry-based demand response management framework for cellular networks powered by smart grid," 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016, pp. 1-6, doi: 10.1109/WCNC.2016.7564929.
ISBN[9781467398145]
ISSN15253511
URIhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84989855991&origin=inward
URIhttp://hdl.handle.net/10576/61429
AbstractIn this paper, the production decisions across multiple energy suppliers in smart grid, powering cellular networks are investigated. The suppliers are characterized by different offered prices and pollutant emissions levels. The challenge is to decide the amount of energy provided by each supplier to each of the operators such that their profitability is maximized while respecting the maximum tolerated level of CO2 emissions. The cellular operators are characterized by their offered quality of service (QoS) to the subscribers and the number of users that determines their energy requirements. Stochastic geometry is used to determine the average power needed to achieve the target probability of coverage for each operator. The total average power requirements of all networks are fed to an optimization framework to find the optimal amount of energy to be provided from each supplier to the operators. The generalized alpha-fair utility function is used to avoid production bias among the suppliers based on profitability of generation. Results illustrate the production behavior of the energy suppliers versus QoS level, cost of energy, capacity of generation, and level of fairness.
Languageen
PublisherIEEE
SubjectCellular networks
demand response
smart grid
stochastic geometry
TitleA stochastic geometry-based demand response management framework for cellular networks powered by smart grid
TypeConference Paper
Pagination1-6
Volume Number2016-September
ESSN1558-2612
dc.accessType Full Text


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record