Trial-based dominance for comparing both the speed and accuracy of stochastic optimizers with standard non-parametric tests
المؤلف | Kenneth V., Price |
المؤلف | Kumar, Abhishek |
المؤلف | Suganthan, P.N. |
تاريخ الإتاحة | 2025-01-19T10:05:06Z |
تاريخ النشر | 2023 |
اسم المنشور | Swarm and Evolutionary Computation |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1016/j.swevo.2023.101287 |
الرقم المعياري الدولي للكتاب | 22106502 |
الملخص | Non-parametric tests can determine the better of two stochastic optimization algorithms when benchmarking results are ordinal-like the final fitness values of multiple trials-but for many benchmarks, a trial can also terminate once it reaches a prespecified target value. In such cases, both the time that a trial takes to reach the target value (or not) and its final fitness value characterize its outcome. This paper describes how trial-based dominance can totally order this two-variable dataset of outcomes so that traditional non-parametric methods can determine the better of two algorithms when one is faster, but less accurate than the other, i.e. when neither algorithm dominates. After describing trial-based dominance, we outline its benefits. We subsequently review other attempts to compare stochastic optimizers, before illustrating our method with the Mann-Whitney U test. Simulations demonstrate that "U-scores" are much more effective than dominance when tasked with identifying the better of two algorithms. We validate U-scores by having them determine the winners of the CEC 2022 competition on single objective, bound-constrained numerical optimization. 2023 |
اللغة | en |
الناشر | Elsevier |
الموضوع | Benchmarking Dominance Evolutionary algorithms Mann-Whitney test Numerical optimization Stochastic optimization Two-variable non-parametric tests |
النوع | Article |
رقم المجلد | 78 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الشبكات وخدمات البنية التحتية للمعلومات والبيانات [142 items ]