عرض بسيط للتسجيلة

المؤلفAryan, Bhambu
المؤلفGao, Ruobin
المؤلفSuganthan, Ponnuthurai Nagaratnam
تاريخ الإتاحة2025-01-19T10:05:06Z
تاريخ النشر2024
اسم المنشورApplied Soft Computing
المصدرScopus
المعرّفhttp://dx.doi.org/10.1016/j.asoc.2024.111759
الرقم المعياري الدولي للكتاب15684946
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62232
الملخصFinancial time series forecasting is crucial in empowering investors to make well-informed decisions, manage risks effectively, and strategically plan their investment activities. However, the non-stationary and non-linear characteristics inherent in time series data pose significant challenges when accurately predicting future forecasts. This paper proposes a novel Recurrent ensemble deep Random Vector Functional Link (RedRVFL) network for financial time series forecasting. The proposed model leverages randomly initialized and fixed weights for the recurrent hidden layers, ensuring stability during training. Furthermore, incorporating stacked hidden layers enables deep representation learning, facilitating the extraction of complex patterns from the data. The proposed model generates the forecast by combining the outputs of each layer through an ensemble approach. A comparative analysis was conducted against several state-of-the-art models over financial time-series datasets, and the results demonstrated the superior performance of our proposed model in terms of forecasting accuracy and predictive capability. 2024 The Author(s)
راعي المشروعOpen Access funding provided by the Qatar National Library.
اللغةen
الناشرElsevier
الموضوعDeep learning
Ensemble deep learning
Finance
Machine learning
Randomized neural network
Time series forecasting
العنوانRecurrent ensemble random vector functional link neural network for financial time series forecasting
النوعArticle
رقم المجلد161
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة