عرض بسيط للتسجيلة

المؤلفSong, Yanjie
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفPedrycz, Witold
المؤلفOu, Junwei
المؤلفHe, Yongming
المؤلفChen, Yingwu
المؤلفWu, Yutong
تاريخ الإتاحة2025-01-19T10:05:07Z
تاريخ النشر2023
اسم المنشورApplied Soft Computing
المصدرScopus
المعرّفhttp://dx.doi.org/10.1016/j.asoc.2023.110975
الرقم المعياري الدولي للكتاب15684946
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62234
الملخصReinforcement Learning (RL) has emerged as a highly effective technique for addressing various scientific and applied problems. Despite its success, certain complex tasks remain challenging to be addressed solely with a single model and algorithm. In response, ensemble reinforcement learning (ERL), a promising approach that combines the benefits of both RL and ensemble learning (EL), has gained widespread popularity. ERL leverages multiple models or training algorithms to comprehensively explore the problem space and possesses strong generalization capabilities. In this study, we present a comprehensive survey on ERL to provide readers with an overview of recent advances and challenges in the field. Firstly, we provide an introduction to the background and motivation for ERL. Secondly, we conduct a detailed analysis of strategies such as model selection and combination that have been successfully implemented in ERL. Subsequently, we explore the application of ERL, summarize the datasets, and analyze the algorithms employed. Finally, we outline several open questions and discuss future research directions of ERL. By offering guidance for future scientific research and engineering applications, this survey significantly contributes to the advancement of ERL. 2023 Elsevier B.V.
راعي المشروعThis work is supported by the National Natural Science Foundation of China ( 72201273 , 72001212 ), the Science and Technology Innovation Team of Shanxi Province, China ( 2023-CX-TD-07 ), the Special Project in Major Fields of Guangdong Universities, China ( 2021ZDZX1019 ), and the Hunan Key Laboratory of Intelligent Decision-making Technology for Emergency Management, China ( 2020TP1013 ).
اللغةen
الناشرElsevier
الموضوعArtificial neural network
Ensemble learning
Ensemble reinforcement learning
Ensemble strategy
Reinforcement learning
العنوانEnsemble reinforcement learning: A survey
النوعArticle Review
رقم المجلد149
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة