عرض بسيط للتسجيلة

المؤلفLi, Ruilin
المؤلفGao, Ruobin
المؤلفSuganthan, Ponnuthurai N.
المؤلفCui, Jian
المؤلفSourina, Olga
المؤلفWang, Lipo
تاريخ الإتاحة2025-01-19T10:05:07Z
تاريخ النشر2023
اسم المنشورExpert Systems with Applications
المصدرScopus
المعرّفhttp://dx.doi.org/10.1016/j.eswa.2023.120279
الرقم المعياري الدولي للكتاب9574174
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62238
الملخصRandomized neural networks (RNNs) have shown outstanding performance in many different fields. The superiority of having fewer training parameters and closed-form solutions makes them popular in small datasets analysis. However, automatically decoding raw electroencephalogram (EEG) data using RNNs is still challenging in EEG-based passive brain-computer interface (pBCI) classification tasks. Models with the high-dimension input of EEG may suffer from overfitting and the intrinsic characteristics of non-stationary, high-level noises and subject variability could limit the generation of distinctive features in the hidden layers. To address these problems in EEG-based pBCI tasks, this work proposes a spectral-ensemble deep random vector functional link (SedRVFL) network that focuses on feature learning in the frequency domain. Specifically, an unsupervised feature-refining (FR) block is proposed to improve the low feature learning capability in RNNs. Moreover, a dynamic direct link (DDL) is performed to further complement the frequency information. The proposed model has been evaluated on a self-collected dataset as well as a public driving dataset. The cross-subject classification results obtained demonstrated its effectiveness. This work offers a new solution for EEG decoding, i.e., using optimized RNNs for decoding complex raw EEG data and boosting the classification performance of EEG-based pBCI tasks. 2023
راعي المشروعThis research is supported by funding from Singapore Maritime Institute . This work was partially supported by the STI2030-Major Projects, China 2021ZD0200201 , the National Natural Science Foundation of China (Grant No. 62201519 ), Key Research Project of Zhejiang Lab, China (No. 2022KI0AC02 ), Exploratory Research Project of Zhejiang Lab, China (No. 2022ND0AN01 ), and Youth Foundation Project of Zhejiang Lab, China (No. 111012-AA2301 ). Qatar National Library
اللغةen
الناشرElsevier
الموضوعDynamic direct link (DDL)
Electroencephalogram (EEG)
Ensemble deep random vector functional link (edRVFL)
Feature-refining (FR) block
Spectral-edRVFL (SedRVFL)
العنوانA spectral-ensemble deep random vector functional link network for passive brain-computer interface
النوعArticle
رقم المجلد227
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة