عرض بسيط للتسجيلة

المؤلفRuobin, Gao
المؤلفLi, Ruilin
المؤلفHu, Minghui
المؤلفSuganthan, P.N.
المؤلفYuen, Kum Fai
تاريخ الإتاحة2025-01-19T10:05:07Z
تاريخ النشر2023
اسم المنشورNeural Networks
المصدرScopus
المعرّفhttp://dx.doi.org/10.1016/j.neunet.2023.06.042
الرقم المعياري الدولي للكتاب8936080
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62239
الملخصThis paper proposes a three-stage online deep learning model for time series based on the ensemble deep random vector functional link (edRVFL). The edRVFL stacks multiple randomized layers to enhance the single-layer RVFL's representation ability. Each hidden layer's representation is utilized for training an output layer, and the ensemble of all output layers forms the edRVFL's output. However, the original edRVFL is not designed for online learning, and the randomized nature of the features is harmful to extracting meaningful temporal features. In order to address the limitations and extend the edRVFL to an online learning mode, this paper proposes a dynamic edRVFL consisting of three online components, the online decomposition, the online training, and the online dynamic ensemble. First, an online decomposition is utilized as a feature engineering block for the edRVFL. Then, an online learning algorithm is designed to learn the edRVFL. Finally, an online dynamic ensemble method, which can measure the change in the distribution, is proposed for aggregating all layers' outputs. This paper evaluates and compares the proposed model with state-of-the-art methods on sixteen time series. 2023 The Authors
راعي المشروعOpen Access funding provided by the Qatar National Library. This research/project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG2-TC-2021-001).
اللغةen
الناشرElsevier
الموضوعContinual learning
Deep learning
Forecasting
Machine learning
Online learning
Random vector functional link network
العنوانOnline dynamic ensemble deep random vector functional link neural network for forecasting
النوعArticle
الصفحات51-69
رقم المجلد166
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة