عرض بسيط للتسجيلة

المؤلفLiang, Jing
المؤلفZhang, Yuyang
المؤلفChen, Ke
المؤلفQu, Boyang
المؤلفYu, Kunjie
المؤلفYue, Caitong
المؤلفSuganthan, Ponnuthurai Nagaratnam
تاريخ الإتاحة2025-01-19T10:05:08Z
تاريخ النشر2024
اسم المنشورScience China Information Sciences
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/s11432-023-3864-6
الرقم المعياري الدولي للكتاب1674733X
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62245
الملخصFeature selection in classification can be considered a multiobjective problem with the objectives of increasing classification accuracy and decreasing the size of the selected feature subset. Dominance-based and decomposition-based multiobjective evolutionary algorithms (MOEAs) have been extensively used to address the feature selection problem due to their strong global search capability. However, most of them face the problem of not effectively balancing convergence and diversity during the evolutionary process. In addressing the aforementioned issue, this study proposes a unified evolutionary framework that combines two search forms of dominance and decomposition. The advantages of the two search methods assist one another in escaping the local optimum and inclining toward a balance of convergence and diversity. Specifically, an improved environmental selection strategy based on the distributions of individuals in the objective space is presented to avoid duplicate feature subsets. Furthermore, a novel knowledge transfer mechanism that considers evolutionary characteristics is developed, allowing for the effective implementation of positive knowledge transfer between dominance-based and decomposition-based feature selection methods. The experimental results demonstrate that the proposed algorithm can evolve feature subsets with good convergence and diversity in a shorter time compared with 9 state-of-the-art feature selection methods on 20 classification problems. 2024, Science China Press.
راعي المشروعThis work was supported in part by National Natural Science Foundation of China (Grant Nos. 61876169, 61922072, 62206255, 62176238, 62106230), National Key R&D Program of China (Grant No. 2022YFD2001200), Natural Science Foundation of Henan Province (Grant No. 222300420088), Program for Science & Technology Innovation Teams in Universities of Henan Province (Grant No. 23IRTSTHN010), Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No. 23HASTIT023), and China Postdoctoral Science Foundation (Grant Nos. 2022M712878, 2022TQ0298, 2021T140616, 2021M692920).
اللغةen
الناشرScience China Press
الموضوعclassification
evolutionary algorithms
feature selection
knowledge transfer
multiobjective optimization
العنوانAn evolutionary multiobjective method based on dominance and decomposition for feature selection in classification
النوعArticle
رقم العدد2
رقم المجلد67
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة