عرض بسيط للتسجيلة

المؤلفBaiju, B.V.
المؤلفSuresh, P.
المؤلفSubathra, G.
المؤلفKeerthika, P.
المؤلفSadasivuni, Kishor Kumar
المؤلفLogeswaran, K.
تاريخ الإتاحة2025-02-16T05:44:25Z
تاريخ النشر2024
اسم المنشورApplying Machine Learning Techniques to Bioinformatics: Few-Shot and Zero-Shot Methods
المصدرScopus
المعرّفhttp://dx.doi.org/10.4018/979-8-3693-1822-5.ch014
معرّف المصادر الموحدhttp://hdl.handle.net/10576/63014
الملخصPersonalized medicine leverages patient-specific biological data to tailor prevention, diagnosis, and treatment. Biomarkers are critical for enabling this precision approach. However, biomarker development faces challenges in discovery, validation, and robust modelling, often requiring extensive labelled data. Machine learning (ML) methods like few-shot and zero-shot learning offer potential solutions by enabling model generalization from limited examples. This chapter provides comprehensive exploration of biomarker types and applications and how few-shot and zero-shot techniques could enhance biomarker prediction tasks. Few-shot learning shows promise for biomarker discovery and validation by transferring knowledge from established biomarkers. Zero-shot learning provides opportunities to detect novel biomarker candidates unconstrained by predefined labels. While nascent, few-shot and zero-shot learning present intriguing paradigms for more efficient biomarker modelling, which could accelerate progress towards personalized medicine.
اللغةen
الناشرIGI Global
الموضوعBiomarkers
Personalized Medicine
Machine Learning
Few-shot Learning
Zero-shot Learning
العنوانUnlocking the future of healthcare: Biomarkers and personalized medicine
النوعBook chapter
الصفحات258-280
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة