Evaluating the performance of metaheuristic-tuned weight agnostic neural networks for crop yield prediction
المؤلف | Jovanovic, Luka |
المؤلف | Zivkovic, Miodrag |
المؤلف | Bacanin, Nebojsa |
المؤلف | Dobrojevic, Milos |
المؤلف | Simic, Vladimir |
المؤلف | Sadasivuni, Kishor Kumar |
المؤلف | Tirkolaee, Erfan Babaee |
تاريخ الإتاحة | 2025-02-16T05:44:29Z |
تاريخ النشر | 2024 |
اسم المنشور | Neural Computing and Applications |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1007/s00521-024-09850-4 |
الرقم المعياري الدولي للكتاب | 9410643 |
الملخص | This study explores crop yield forecasting through weight agnostic neural networks (WANN) optimized by a modified metaheuristic. WANNs offer the potential for lighter networks with shared weights, utilizing a two-layer cooperative framework to optimize network architecture and shared weights. The proposed metaheuristic is tested on real-world crop datasets and benchmarked against state-of-the-art algorithms using standard regression metrics. While not claiming WANN as the definitive solution, the model demonstrates significant potential in crop forecasting with lightweight architectures. The optimized WANN models achieve a mean absolute error (MAE) of 0.017698 and an R-squared (R2) score of 0.886555, indicating promising forecasting performance. Statistical analysis and Simulator for Autonomy and Generality Evaluation (SAGE) validate the improvement significance and feature importance of the proposed approach. |
راعي المشروع | Open access funding provided by the Scientific and Technological Research Council of T\u00FCrkiye (T\u00DCB\u0130TAK). Luka Jovanovic, Miodrag Zivkovic, Nebojsa Bacanin, and Milos Dobrojevic acknowledge funding provided by the Institute of Physics Belgrade, through the grant by the Ministry of Education, Science and Technological Development of the Republic of Serbia, as well as by the Science Fund of the Republic of Serbia, Grant No. #7373, Characterizing crises-caused air pollution alternations using an artificial intelligence-based framework - crAIRsis and Grant No. #7502, Intelligent Multi-Agent Control and Optimization Applied to Green Buildings and Environmental Monitoring Drone Swarms - ECOSwarm. |
اللغة | en |
الناشر | Springer Science and Business Media Deutschland GmbH |
الموضوع | Crop yield prediction Metaheuristics Reptile search algorithm Weight agnostic neural networks |
النوع | Article |
الصفحات | 14727-14756 |
رقم العدد | 24 |
رقم المجلد | 36 |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الأبحاث [1449 items ]