Adaptive data-driven fault-tolerant control for nonlinear systems: Koopman-based virtual actuator approach
View/ Open
Publisher version (Check access options)
Check access options
Date
2023Metadata
Show full item recordAbstract
This paper proposes an adaptive data-driven fault-tolerant control scheme using the Koopman operator for unknown dynamics subjected to nonlinearities, time-varying loss of effectiveness, and additive actuator faults. The main objective of this method is to design a virtual actuator to hide actuator faults from the view of the system's nominal controller without having any prior knowledge about the system's underlying dynamics. The designed virtual actuator is placed between the faulty plant and the nominal controller of the system to keep the dynamical system's performance consistent before and after the occurrence of actuator faults. Based on the Koopman operator theory, an equivalent Koopman predictor is first obtained using the process data only, without knowing the governing equations of the underlying dynamics. Koopman operator is an infinite-dimensional, linear operator which takes the nonlinear process data into an infinite-dimensional feature space where the dynamic data correlations have linear behavior. Next, based on the approximated system's Koopman operator, a virtual actuator is designed and implemented without knowing the system's nominal controller. Needless to use a separate fault detection, isolation, and identification module to perform fault-tolerant control, the current method leverages the adaptive framework to keep the system's desired performance in facing time-varying additive and loss of effectiveness actuator faults. Finally, the approach's efficacy is demonstrated using simulation on a two-link manipulator benchmark, and a comparison study is presented.
Collections
- Electrical Engineering [2806 items ]
Related items
Showing items related by title, author, creator and subject.
-
Fault-Tolerant Control of One-Sided Lipschitz Nonlinear Systems
Yadegar, M.; Meskin, Nader ( Institute of Electrical and Electronics Engineers Inc. , 2022 , Article)In this short paper, development of an adaptive fault tolerant control (FTC) using a virtual actuator framework is presented for one-sided Lipschitz nonlinear systems subjected to time-varying loss of effectiveness and ... -
Event-triggered fault estimation and accommodation design for linear systems
Davoodi, Mohammadreza; Meskin, Nader; Khorasani, Khashayar ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)The problem of event-triggered active fault-tolerant control (E-AFTC) of discrete-time linear systems is addressed in this paper by using an integrated design of event-triggered fault/state estimator with a fault-tolerant ... -
Fault-tolerant control of nonlinear heterogeneous multi-agent systems
Yadegar, M.; Meskin, Nader ( Elsevier Ltd , 2021 , Article)In this paper, time-varying loss of effectiveness and time-varying additive actuator faults in nonlinear heterogeneous multi-agent systems (MAS) are considered and an adaptive fault tolerant-control (FTC) scheme based on ...