عرض بسيط للتسجيلة

المؤلفFaisal, Md Ahasan Atick
المؤلفMutlu, Onur
المؤلفMahmud, Sakib
المؤلفTahir, Anas
المؤلفChowdhury, Muhammad E.H.
المؤلفBensaali, Faycal
المؤلفAlnabti, Abdulrahman
المؤلفYavuz, Mehmet Metin
المؤلفEl-Menyar, Ayman
المؤلفAl-Thani, Hassan
المؤلفYalcin, Huseyin Cagatay
تاريخ الإتاحة2025-03-29T06:33:28Z
تاريخ النشر2025-02-17
اسم المنشورMedical and Biological Engineering and Computing
المعرّفhttp://dx.doi.org/10.1007/s11517-025-03311-3
الاقتباسFaisal, M. A. A., Mutlu, O., Mahmud, S., Tahir, A., Chowdhury, M. E., Bensaali, F., ... & Yalcin, H. C. (2025). Rapid wall shear stress prediction for aortic aneurysms using deep learning: a fast alternative to CFD. Medical & Biological Engineering & Computing, 1-18.
الرقم المعياري الدولي للكتاب0140-0118
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85218196841&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64033
الملخصAbstract: Aortic aneurysms pose a significant risk of rupture. Previous research has shown that areas exposed to low wall shear stress (WSS) are more prone to rupture. Therefore, precise WSS determination on the aneurysm is crucial for rupture risk assessment. Computational fluid dynamics (CFD) is a powerful approach for WSS calculations, but they are computationally intensive, hindering time-sensitive clinical decision-making. In this study, we propose a deep learning (DL) surrogate, MultiViewUNet, to rapidly predict time-averaged WSS (TAWSS) distributions on abdominal aortic aneurysms (AAA). Our novel approach employs a domain transformation technique to translate complex aortic geometries into representations compatible with state-of-the-art neural networks. MultiViewUNet was trained on 23 real and 230 synthetic AAA geometries, demonstrating an average normalized mean absolute error (NMAE) of just 0.362% in WSS prediction. This framework has the potential to streamline hemodynamic analysis in AAA and other clinical scenarios where fast and accurate stress quantification is essential.
راعي المشروعOpen Access funding provided by the Qatar National Library. This research work was made possible by Qatar University International Research Collaboration Co-fund program IRCC 2020 002, and Qatar National Research Fund, National Research Priorities Program NPRP13S-0108-200024.
اللغةen
الناشرSpringer Nature
الموضوعAbdominal aortic aneurysm
Artificial intelligence
Computational fluid dynamics
Deep learning
Hemodynamics
Neural network
العنوانRapid wall shear stress prediction for aortic aneurysms using deep learning: a fast alternative to CFD
النوعArticle
الصفحات1-18
ESSN1741-0444
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة