عرض بسيط للتسجيلة

المؤلفVaisali, Chandrasekar
المؤلفMohammad, Syed
المؤلفAboumarzouk, Omar
المؤلفSingh, Ajay Vikram
المؤلفDakua, Sarada Prasad
تاريخ الإتاحة2025-03-31T14:37:11Z
تاريخ النشر2025-01-10
اسم المنشورJournal of Hazardous Materials
المعرّفhttp://dx.doi.org/10.1016/j.jhazmat.2024.137071
الاقتباسChandrasekar, V., Mohammad, S., Aboumarzouk, O., Singh, A. V., & Dakua, S. P. (2025). Quantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment. Journal of Hazardous Materials, 487, 137071.
الرقم المعياري الدولي للكتاب0304-3894
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S0304389424036525
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64043
الملخصPoint of departure (POD) is a concept used in risk assessment to calculate the reference dose of exposure that is likely to have no appreciable risk on health. POD can be directly utilized from no observed adverse effect levels (NOAEL) which is the dose or exposure level at which there is little or no risk of adverse effects. However, NOAEL values are unavailable for most of the chemicals due to inconsistent animal toxicity data. Hence, the current study utilizes a two-stage machine learning (ML) model for predicting NOAEL values, based on data curated from diverse toxicity exposures. In the first stage, a random forest regressor is used for supervised outlier detection and removal addressing any variability in data and poor correlations. The refined data is then used for toxicity prediction using several ML models; random forest and XGBoost show relatively higher performance with an R2 value of 0.4 and 0.43, respectively, for predicting NOAEL in chronic toxicity. Similarly, feature combinations with absorption distribution metabolism and excretion (ADME) indicate better NOAEL prediction for acute toxicity. External validation is performed by predicting NOAEL values for cosmetic pigments and calculating reference doses (RfD). Notably, pigments like orange and red show higher RfD values, indicating broader safety margins. This study provides a practical framework for addressing variability and data limitations in toxicity prediction while offering insights into its applicability in risk evaluation.
راعي المشروعThis publication was made possible by the Medical Research Center project, MRC-01-23-607 and partly by MRC-01-22-295 from the Hamad Medical Corporation. The Open Access funding was provided by the Qatar National Library.
اللغةen
الناشرElsevier
الموضوعPoint of departure
Machine learning
Toxicity
Pigments
العنوانQuantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment
النوعArticle
رقم المجلد487
ESSN1873-3336
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة