• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Health implications of atmospheric aerosols from asbestos-bearing road pavements traditionally used in Southern Brazil.

    Thumbnail
    Date
    2016-12-01
    Author
    Godoi, Ricardo H M
    Gonçalves, Sérgio J
    Sayama, Célia
    Polezer, Gabriela
    Reis Neto, José M
    Alföldy, Bálint
    Van Grieken, René
    Riedi, Carlos A
    Yamamoto, Carlos I
    Godoi, Ana F L
    Bencs, László
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Serpentine and amphibole asbestos occur naturally in certain geologic settings worldwide, most commonly in association with ultramafic rocks, along associated faults. Ultramafic rocks have been used in Piên County, Southern Brazil for decades for the purpose of road paving in rural and urban areas, but without the awareness of their adverse environmental and health impact. The aim of this study was the chemical characterization of aerosols re-suspended in two rural roads of Piên, paved with ultramafic rocks and to estimate the pulmonary deposition of asbestos aerosols. Bulk aerosol samples were analyzed by means of X-ray fluorescence spectrometry and X-ray diffraction analysis, in order to characterize elemental composition and crystallinity. Single-particle compositions of aerosols were analyzed by computer-controlled electron-probe microanalysis, indicating the presence of a few percentages of serpentine and amphibole. Given the chemical composition and size distribution of aerosol particles, the deposition efficiency of chrysotile, a sub-group of serpentine, in two principal segments of the human respiratory system was estimated using a lung deposition model. As an important finding, almost half of the inhaled particles were calculated to be deposited in the respiratory system. Asbestos depositions were significant (∼25 %) in the lower airways, even though the selected breathing conditions (rest situation, nose breathing) implied the lowest rate of respiratory deposition. Considering the fraction of inhalable suspended chrysotile near local roads, and the long-term exposure of humans to these aerosols, chrysotile may represent a hazard, regarding more frequent development of lung cancer in the population of the exposed region.
    DOI/handle
    http://dx.doi.org/10.1007/s11356-016-7586-0
    http://hdl.handle.net/10576/6413
    Collections
    • Atmospheric Science Cluster [‎38‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video