• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel classical machine learning framework for early sepsis prediction using electronic health record data from ICU patients

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0010482524013696-main.pdf (4.804Mb)
    Date
    2025-01-31
    Author
    Prithula, Johayra
    Islam, Khandaker Reajul
    Kumar, Jaya
    Tan, Toh Leong
    Reaz, Mamun Bin Ibne
    Rahman, Tawsifur
    Zughaier, Susu M.
    Khan, Muhammad Salman
    Murugappan, M.
    Chowdhury, Muhammad E.H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Sepsis, a life-threatening condition triggered by the body's response to infection, remains a significant global health challenge, annually affecting millions in the United States alone with substantial mortality and healthcare costs. Early prediction of sepsis is critical for timely intervention and improved patient outcomes. This study introduces an innovative predictive model leveraging machine learning techniques and a specific data-splitting approach on highly imbalanced electronic health records (EHRs). Using PhysioNet/CinC Challenge 2019 data from 40,336 patients, including vital signs, lab values, and demographics. Preliminary assessments using classical and stacked ML models with Synthetic Minority Oversampling Technique (SMOTE) augmentation were conducted, showing improved performance. It is found that stacking ML models enhances overall accuracy but faces limitations in precision, recall, and F1 score for positive class prediction. A novel data-splitting approach with 5-fold cross-validation and SMOTE and COPULA augmentation techniques demonstrated promise, with F1 scores ranging from 93 % to 94 % using the COPULA technique. COPULA excelled at predictions for different hours' onsets compared to the SMOTE technique. The proposed model outperformed existing studies, suggesting clinical viability for early sepsis prediction.
    URI
    https://www.sciencedirect.com/science/article/pii/S0010482524013696
    DOI/handle
    http://dx.doi.org/10.1016/j.compbiomed.2024.109284
    http://hdl.handle.net/10576/64369
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • Medicine Research [‎1739‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video