• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Comprehensive Machine Learning Approach for COVID-19 Target Discovery in the Small-Molecule Metabolome

    Thumbnail
    View/Open
    metabolites-15-00044-with-cover.pdf (2.319Mb)
    Date
    2025-01-11
    Author
    Sumon, Md Shaheenur Islam
    Hossain, Md Sakib Abrar
    Al-Sulaiti, Haya
    Yassine, Hadi M.
    Chowdhury, Muhammad E.H.
    Metadata
    Show full item record
    Abstract
    Background/Objectives: Respiratory viruses, including Influenza, RSV, and COVID-19, cause various respiratory infections. Distinguishing these viruses relies on diagnostic methods such as PCR testing. Challenges stem from overlapping symptoms and the emergence of new strains. Advanced diagnostics are crucial for accurate detection and effective management. This study leveraged nasopharyngeal metabolome data to predict respiratory virus scenarios including control vs. RSV, control vs. Influenza A, control vs. COVID-19, control vs. all respiratory viruses, and COVID-19 vs. Influenza A/RSV. Method: We proposed a stacking-based ensemble technique, integrating the top three best-performing ML models from the initial results to enhance prediction accuracy by leveraging the strengths of multiple base learners. Key techniques such as feature ranking, standard scaling, and SMOTE were used to address class imbalances, thus enhancing model robustness. SHAP analysis identified crucial metabolites influencing positive predictions, thereby providing valuable insights into diagnostic markers. Results: Our approach not only outperformed existing methods but also revealed top dominant features for predicting COVID-19, including Lysophosphatidylcholine acyl C18:2, Kynurenine, Phenylalanine, Valine, Tyrosine, and Aspartic Acid (Asp). Conclusions: This study demonstrates the effectiveness of leveraging nasopharyngeal metabolome data and stacking-based ensemble techniques for predicting respiratory virus scenarios. The proposed approach enhances prediction accuracy, provides insights into key diagnostic markers, and offers a robust framework for managing respiratory infections.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85215779737&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/metabo15010044
    http://hdl.handle.net/10576/64403
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video