• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Information Intelligence
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stacked Ensemble Deep Random Vector Functional Link Network with Residual Learning for Medium-Scale Time-Series Forecasting

    Thumbnail
    View/Open
    Stacked_Ensemble_Deep_Random_Vector_Functional_Link_Network_With_Residual_Learning_for_Medium-Scale_Time-Series_Forecasting.pdf (1.885Mb)
    Date
    2025
    Author
    Gao, Ruobin
    Hu, Minghui
    Li, Ruilin
    Luo, Xuewen
    Suganthan, Ponnuthurai Nagaratnam
    Tanveer, M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The deep random vector functional link (dRVFL) and ensemble dRVFL (edRVFL) succeed in various tasks and achieve state-of-the-art performance compared with other randomized neural networks (NNs). However, existing edRVFL structures need more diversity and error correction ability in an independent network. Our work fills the gap by combining stacked deep blocks and residual learning with the edRVFL. Subsequently, we propose a novel dRVFL combined with residual learning, ResdRVFL, whose deep layers calibrate the wrong estimations from shallow layers. Additionally, we propose incorporating a scaling parameter to control the scaling of residuals from shallow layers, thus mitigating the risk of overfitting. Finally, we present an ensemble deep stacking network, SResdRVFL, based on ResdRVFL. SResdRVFL aggregates multiple blocks into a cohesive network, leveraging the benefits of deep learning and ensemble learning. We evaluate the proposed model on 28 datasets and compare it with the state-of-the-art methods. The comparative study demonstrates that the SResdRVFL is the best-performing approach in terms of average ranking and errors based on 28 datasets.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85217972017&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TNNLS.2025.3529219
    http://hdl.handle.net/10576/64798
    Collections
    • Information Intelligence [‎98‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video