• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-efficient multi-objective distributed assembly permutation flowshop scheduling by Q-learning based meta-heuristics

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1568494624010214-main.pdf (5.190Mb)
    Date
    2024-09-12
    Author
    Hui, Yu
    Gao, Kaizhou
    Li, Zhiwu
    Suganthan, Ponnuthurai Nagaratnam
    Metadata
    Show full item record
    Abstract
    This study addresses energy-efficient multi-objective distributed assembly permutation flowshop scheduling problems with minimisation of maximum completion time, mean of earliness and tardiness, and total carbon emission simultaneously. A mathematical model is introduced to describe the concerned problems. Five meta-heuristics are employed and improved, including the artificial bee colony, genetic algorithms, particle swarm optimization, iterated greedy algorithms, and Jaya algorithms. To improve the quality of solutions, five critical path-based neighborhood structures are designed. Q-learning, a value-based reinforcement learning algorithm that learns an optimal strategy by repeatedly interacting with the environment, is embedded into meta-heuristics. The Q-learning guides algorithms intelligently select appropriate neighborhood structures in the iterative process. Then, two machine speed adjustment strategies are developed to further optimize the obtained solutions. Finally, extensive experimental results show that the Jaya algorithm with Q-learning has the best performance for solving the considered problems.
    URI
    https://www.sciencedirect.com/science/article/pii/S1568494624010214
    DOI/handle
    http://dx.doi.org/10.1016/j.asoc.2024.112247
    http://hdl.handle.net/10576/64869
    Collections
    • Interdisciplinary & Smart Design [‎32‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video