• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    STOCK MARKET FORECASTING: AN APPLICATION OF LONG SHORT TERM MEMORY (LSTM) RECURRENT NEURAL NETWORK

    Thumbnail
    View/Open
    HishamYassin_OGSApprovedProject.pdf (7.257Mb)
    Date
    2018-01
    Author
    YASSIN, HISHAM
    Metadata
    Show full item record
    Abstract
    Predicting stock market prices is regarded as a challenging task of financial time series, due to its chaotic, non-linear, non-stationary and dynamic nature. In this project we address the problem of stock market forecasting by making a comparison between different machine learning prediction models mainly Support Vector Machine (SVM), Artificial Neural Networks (ANN), Random Forest (RS), and Long Short Term Memory (LSTM) Recurrent Neural Network. For this goal, different models are built for predicting stock prices for 10 days in advance, and a number of experiments were executed based on ten years of historical data for stock prices from different sectors of the industry of the Qatari and the American markets. The results were analyzed using Mean Squared Error (MSE) and Mean Absolute Error (MAE) measuring metrics. Furthermore, we developed an application for predicting stock prices and trend movement with a motivation that trading strategies and investment decisions are more reliable and efficient when guided by forecasts which could lead to more profit.
    DOI/handle
    http://hdl.handle.net/10576/11428
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video