• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    STOCK MARKET FORECASTING: AN APPLICATION OF LONG SHORT TERM MEMORY (LSTM) RECURRENT NEURAL NETWORK

    Thumbnail
    عرض / فتح
    HishamYassin_OGSApprovedProject.pdf (7.257Mb)
    التاريخ
    2018-01
    المؤلف
    YASSIN, HISHAM
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Predicting stock market prices is regarded as a challenging task of financial time series, due to its chaotic, non-linear, non-stationary and dynamic nature. In this project we address the problem of stock market forecasting by making a comparison between different machine learning prediction models mainly Support Vector Machine (SVM), Artificial Neural Networks (ANN), Random Forest (RS), and Long Short Term Memory (LSTM) Recurrent Neural Network. For this goal, different models are built for predicting stock prices for 10 days in advance, and a number of experiments were executed based on ten years of historical data for stock prices from different sectors of the industry of the Qatari and the American markets. The results were analyzed using Mean Squared Error (MSE) and Mean Absolute Error (MAE) measuring metrics. Furthermore, we developed an application for predicting stock prices and trend movement with a motivation that trading strategies and investment decisions are more reliable and efficient when guided by forecasts which could lead to more profit.
    DOI/handle
    http://hdl.handle.net/10576/11428
    المجموعات
    • الحوسبة [‎103‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video