• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    3D Interconnected Mesoporous Alumina with Loaded Hemoglobin as a Highly Active Electrochemical Biosensor for H<inf>2</inf>O<inf>2</inf>

    Thumbnail
    Date
    2018-06-06
    Author
    Yang, X.
    Yang, Xuanyu
    Cheng, Xiaowei
    Song, Hongyuan
    Ma, Junhao
    Pan, Panpan
    Elzatahry, Ahmed A.
    Su, Jiacan
    Deng, Yonghui
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Alumina is one of the most common and stable metal oxides in nature, which has been developed as a novel adsorbent in enrichment of biomolecules due to its excellent affinity to phosphor or amino groups. In this study, ordered mesoporous alumina (OMA) with interconnected mesopores and surface acidic property is synthesized through a solvent evaporation induced co-assembly process using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymer as a template and aluminium acetylacetonate (Al(acac)3) as the aluminium source. The pore size (12.1–19.7 nm), pore window size (3.5–9.0 nm) and surface acidity (0.092–0.165 mmol g−1) can be precisely adjusted. The highly porous structure endows the OMA materials with high hemoglobin (Hb) immobilization capacity (170 mg g−1). The obtained Hb@OMA composite is used as an electrocatalyst of biosensor for convienet and fast detection of hydrogen peroxide (H2O2) with a low H2O2 detection limit of 1.7 × 10−8 m and a wide linear range of 2.5 × 10−8 to 5.0 × 10−5 m. Moreover, the Hb@OMA sensors show a good performance in real time detection of H2O2 released from Homo sapiens bone osteosarcoma, indicating their potential application in complex biological processes.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044416007&origin=inward
    DOI/handle
    http://dx.doi.org/10.1002/adhm.201800149
    http://hdl.handle.net/10576/11879
    Collections
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video