• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A blockchain-based fog computing framework for activity recognition as an application to e-Healthcare services

    No Thumbnail [120x130]
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Islam N.
    Faheem Y.
    Din I.U.
    Talha M.
    Guizani M.
    Khalil M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In modern e-Healthcare systems, human activity recognition (HAR) is one of the most challenging tasks in remote monitoring of patients suffering from mental illness or disabilities for necessary assistance. One of the major issues is to provide security to a number of different connected devices to the Internet, known as Internet of Things (IoT). A potential solution to this problem is the blockchain-based architecture. In addition, the complex nature of activities performed by humans in diverse healthcare environments reduces the qualitative measures for extracting distinct features representing various human actions. To answer this challenge, we propose an activity monitoring and recognition framework, which is based on multi-class cooperative categorization procedure to improve the activity classification accuracy in videos supporting the fog or cloud computing-based blockchain architecture. In the proposed approach, frame-based salient features are extracted from videos consisting of different human activities, which are further processed into action vocabulary for efficiency and accuracy. Similarly, the classification of activities is performed using support vector machine (SVM) based on the error-correction-output-codes (ECOC) framework. It has been observed through experimental results that the proposed approach is more efficient and achieves higher accuracy regarding human activity recognition as compared to other state-of-the-art action recognition approaches. - 2019 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.future.2019.05.059
    http://hdl.handle.net/10576/13808
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail