• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2020)
  • Theme 4: Sustainability, Renovation, and Monitoring of Civil Infrastructure
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2020)
  • Theme 4: Sustainability, Renovation, and Monitoring of Civil Infrastructure
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Near Surface Embedded Application for FRCM Strengthening of RC Beams in Flexure

    Thumbnail
    View/Open
    CIC2020_ Artcile93.pdf (2.626Mb)
    Date
    2020
    Author
    El-Sherif, HossamEldin
    Ebead, Usama
    Metadata
    Show full item record
    Abstract
    In this paper, the efficacy of a recent strengthening technique, referred to as Near Surface Embedded (NSE), has been investigated for flexural strengthening of Reinforced Concrete (RC) beams using Fabric Reinforced Cementitious Matrix (FRCM). The process of applying NSE-FRCM strengthening technique involves removing the concrete layer at the beam's soffit (being the most deteriorated), which is then replaced by the FRCM composite. In this study, seven RC beams were constructed and tested under four-point loading considering two test variables, namely, (a) FRCM material (Polyparaphenylene Benzobisoxazole (PBO)/carbon/glass), and (b) strengthening configuration (NSE/ Externally-Bonded (EB)). Amongst the three FRCM materials, the PBO-FRCM system offered the highest strengthening effectiveness (i.e., highest gain in the load carrying capacity). The average gain in the load-carrying capacity was 45% and 58% for the NSE- and EB-FRCM strengthened beams, respectively, compared to the reference (i.e., non-strengthened) specimen. Nonetheless, the results showed a clear advantage for NSE-FRCM strengthening systems over those externally bonded in terms of ductility performance. The advantage of NSE over EB strengthening was also demonstrated by the improved FRCM/concrete bond associated with NSE-FRCM application
    URI
    http://www.cic.qa
    DOI/handle
    http://dx.doi.org/10.29117/cic.2020.0100
    http://hdl.handle.net/10576/14686
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]
    • Theme 4: Sustainability, Renovation, and Monitoring of Civil Infrastructure [‎36‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video