• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A facile biliquid-interface co-assembly synthesis of mesoporous vesicles with large pore sizes

    No Thumbnail [120x130]
    Date
    2016
    Author
    Zhang, Yu
    Yue, Qin
    Jiang, Yongjian
    Luo, Wei
    Elzatahry, Ahmed A.
    Alghamdi, Abdulaziz
    Deng, Yonghui
    Zhao, Dongyuan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, novel mesoporous siliceous vesicles with ultrathin walls (50 nm in thickness) and large cavities were synthesized through a facile biliquid-interface co-assembly method by using cetyltrimethylammonium bromide as a structure-directing agent and tetraethoxysilane as a silica source. Various synthesis parameters (stirring rate, ionic strength, reaction temperature) have been investigated and were found to affect the interface co-assembly process. The obtained vesicles are highly water-dispersible and have large mesopores (6.7 nm) in the walls, high surface area (902 m2 g-1) and large pore volume (1.57 cm3 g-1). Cytotoxicity experiments and cellular uptake studies based on fluorescence imaging indicate that the obtained vesicles possess excellent biocompatibility and can be readily internalized by Pan02 cells due to their good water dispersibility and affinity to cell membranes. The outstanding properties of the obtained mesoporous silica vesicles make them good candidates for various bio-applications, such as drug delivery and enzyme immobilization. 2016 The Royal Society of Chemistry.
    DOI/handle
    http://dx.doi.org/10.1039/c5ce02592c
    http://hdl.handle.net/10576/22923
    Collections
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail