• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 1: Energy and Environment
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 1: Energy and Environment
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Salinity Effects on Symbiodinium sp. growth rate in Controlled conditions and produced Biomass Biochemical Characterization

    Thumbnail
    View/Open
    246.pdf (6.262Mb)
    Date
    2021
    Author
    Siddiqua, Ayesha
    Yahia, Mohamed Najib Daly
    Metadata
    Show full item record
    Abstract
    Salinity is an abiotic influencer to the growth and the efficiency of the algal Symbiodinium that coexists in symbiosis with corals. In light of the high salinity conditions that prevail in the Arabian Gulf including the waters of Qatar, we observed the effect of salinity above local-ambient levels on Symbiodinium's growth rate, biomass and its photosynthetic efficiency. Symbiodinium sp. extracted from Platygyra daedalea was launched in f/2 media in controlled incubator conditions at salinities of 30, 40 (control), 45, 50, 60 and 70 psu for 11 days. Subsamples were obtained and fixed for cell density counts and growth rate calculations. Photosynthetic efficiency was determined using an Aquapen, and biomass at the end of the experiment was sent for biochemical characterization. A two-way ANOVA test was performed on the data using SigmaPlot software. Our results indicated that at salinities 55 psu and greater, significant decline in both cell density and photosynthetic efficiency was observed. At 70 psu, growth rate was exclusively negatively affected, and biochemical compositions varied at all salinity levels with a notable increase in lipid content at 70 psu. Impact of high salinity has not been widely studied in the Arabian Gulf. Thus, this study will aid conservational efforts while also encouraging further studies on the contribution of abiotic factors to Symbiodinium sp. growth in the region.
    URI
    https://doi.org/10.29117/quarfe.2021.0072
    DOI/handle
    http://hdl.handle.net/10576/24339
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • Theme 1: Energy and Environment [‎73‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video