• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Transportation
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Transportation
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Blue collar laborers’ travel pattern recognition: Machine learning classifier approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Blue Collar Article.pdf (4.365Mb)
    Date
    2021-12-01
    Author
    Alkhereibi, Aya Hasan
    Tahmasseby, Shahram
    Mohammed, Semira
    Muley, Deepti
    Metadata
    Show full item record
    Abstract
    This paper proposes a pattern recognition model to develop clusters of homogenous activities for blue-collar workers in the State of Qatar. The activity-based data from the travel diary of 1051 blue-collar workers collected by the Ministry of Transportation and Communication (MoTC) in Qatar was used for analysis. A pattern recognition model is applied to a revealed preference (RP) survey obtained from the Ministry of Transportation and Communication (MoTC) in Qatar for the travel diary for blue-collar workers. Raw data preprocessing and outliers detection and filtering algorithms were applied at the first stage of the analysis, and consequently, an activity-based travel matrix was developed for each household. The research methodology undertaken in this paper comprises a combination of different machine learning techniques, predominantly by applying clustering and classification methods. A bagged Clustering algorithm was employed to identify the number of clusters, then the C-Means algorithm and the Pamk algorithm were implemented to validate the results. Meanwhile, the interdependencies between the resulted clusters and the socio-demographic attributes for the households were examined using crosstabulation analysis. The study results show significant diversity amongst the clusters in terms of trip purpose, modal split, destination choice, and occupation. Furthermore, whilst the Bagged Clusters and Pamk Clusters techniques on the three attributes yielded similar results, the Cmeans Clusters differed significantly in a number of the clusters. Applying such pattern recognition models on big and complex activity datasets could assist transport planners to understand the travel needs of segments of the population well and formulating better-informed strategies.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85120383041&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.trip.2021.100506
    http://hdl.handle.net/10576/25630
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]
    • Transportation [‎90‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video