• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-Time Glaucoma Detection from Digital Fundus Images Using Self-ONNs

    Thumbnail
    Date
    2021
    Author
    Devecioglu O.C.
    Malik J.
    Ince T.
    Kiranyaz, Mustafa Serkan
    Atalay E.
    Gabbouj M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118196905&doi=10.1109%2fACCESS.2021.3118102&partnerID=40&md5=5b585cf6eb951060d376a8e8259fece1
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3118102
    http://hdl.handle.net/10576/30594
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Self-organized Operational Neural Networks with Generative Neurons 

      Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)
      Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron ...
    • Thumbnail

      Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images 

      Sirinukunwattana, Korsuk; Raza, Shan E Ahmed; Tsang, Yee-Wah; Snead, David R. J.; Cree, Ian A.; Rajpoot, Nasir M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Article)
      Detection and classification of cell nuclei in histopathology images of cancerous tissue stained with the standard hematoxylin and eosin stain is a challenging task due to cellular heterogeneity. Deep learning approaches ...
    • Thumbnail

      Health monitoring and degradation prognostics in gas turbine engines using dynamic neural networks 

      Vatani, A.; Khorasani, K.; Meskin, Nader ( American Society of Mechanical Engineers (ASME) , 2015 , Conference)
      In this paper two artificially intelligent methodologies are proposed and developed for degradation prognosis and health monitoring of gas turbine engines. Our objective is to predict the degradation trends by studying ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video