• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comprehensive production method of self-cryoprotected nano-liposome powders

    No Thumbnail [120x130]
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2015
    Author
    Gala, Rikhav P.
    Khan, Iftikhar
    Elhissi, Abdelbary M.A.
    Alhnan, Mohamed A.
    Metadata
    Show full item record
    Abstract
    This study provided a convenient approach for large scale production of hydrogenated soya phosphatidylcholine nano-liposome powders using beclometasone dipropionate as a model drug and sucrose as proliposome carrier. Fluid-bed coating was employed to manufacture proliposomes by coating sucrose with the phospholipid (5%, 10%, 15% and 20% weight gains), followed by hydration, size reduction using high pressure homogenization, and freeze-drying to yield stable nano-vesicles. High pressure homogenization was compared with probe-sonication in terms of liposome size, zeta potential and drug entrapment. Furthermore, the effect of freeze-drying on vesicle properties generated using both size reduction methods was evaluated. Results have shown that high-pressure homogenization followed by freeze-drying and rehydration tended to yield liposomes smaller than the corresponding vesicles downsized via probe-sonication, and all size measurements were in the range of 72.64-152.50 nm, indicating that freeze-drying was appropriate, regardless of the size reduction technique. The liposomes, regardless of size reduction technique and freeze drying had slightly negative zeta potential values or were almost neutral in surface charge. The entrapment efficiency of BDP in homogenized liposomes was found to increase following freeze-drying, hence the drug entrapment efficiency values in rehydrated liposomes were 64.9%, 57%, 69.5% and 64.5% for 5%, 10%, 15% and 20% weight gains respectively. In this study, we have reported a reliable production method of nano-liposomes based on widely applicable industrial technologies such as fluid-bed coating, high pressure homogenization and freeze-drying. Moreover, sucrose played a dual role as a carrier in the proliposome formulations and as a cryoprotectant during freeze-drying.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijpharm.2015.03.038
    http://hdl.handle.net/10576/40527
    Collections
    • Pharmacy Research [‎1389‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail