• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of critical total drawdown in sand production from gas wells: Machine learning approach

    Thumbnail
    View/Open
    Can J Chem Eng - 2022 - Alakbari - Prediction of critical total drawdown in sand production from gas wells Machine.pdf (5.135Mb)
    Date
    2023
    Author
    Alakbari, Fahd Saeed
    Mohyaldinn, Mysara Eissa
    Ayoub, Mohammed Abdalla
    Muhsan, Ali Samer
    Abdulkadir, Said Jadid
    Hussein, Ibnelwaleed A.
    Salih, Abdullah Abduljabbar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Sand production is a critical issue in petroleum wells. The critical total drawdown (CTD) is an essential indicator of the onset of sand production. Although some models are available for CTD prediction, most of them are proven to lack accuracy or use commercial software. Furthermore, the previous correlations have not studied the trend analysis to verify the correct relationships between the parameters. Therefore, this study aims to build accurate and robust models for predicting CTD using response surface methodology (RSM) and support vector machine (SVM). The RSM is utilized to obtain the equation without using any software. The SVM model is an alternative method to predict the CTD with higher accuracy. This study used 23 datasets to develop the proposed models. The CTD is a strong function of the total vertical depth, cohesive strength, effective overburden vertical stress, and transit time with correlation coefficients (R) of 0.968, 0.963, 0.918, and −0.813. Different statistical methods, that is, analysis of variance (ANOVA), F-statistics test, fit statistics, and diagnostics plots, have shown that the RSM correlation has high accuracy and is more robust than correlations reported in the literature. Moreover, trend analysis has proven that the proposed models ideally follow the correct trend. The RSM correlation decreased the average absolute percent relative error (AAPRE) by 12.7% compared to all published correlations' AAPRE of 22.6%–30.4%. The SVM model has shown the lowest AAPRE of 6.1%, with the highest R of 0.995. The effects of all independent variables on the CTD are displayed in three-dimensional plots and showed significant interactions.
    DOI/handle
    http://dx.doi.org/10.1002/cjce.24640
    http://hdl.handle.net/10576/45387
    Collections
    • Chemical Engineering [‎1195‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video