• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A reservoir bubble point pressure prediction model using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique with trend analysis

    Thumbnail
    View/Open
    journal.pone.0272790.pdf (3.423Mb)
    Date
    2022
    Author
    Alakbari, Fahd Saeed
    Mohyaldinn, Mysara Eissa
    Ayoub, Mohammed Abdalla
    Muhsan, Ali Samer
    Hussein, Ibnelwaleed A.
    Metadata
    Show full item record
    Abstract
    The bubble point pressure (Pb) could be obtained from pressure-volume-temperature (PVT) measurements; nonetheless, these measurements have drawbacks such as time, cost, and difficulties associated with conducting experiments at high-pressure-high-temperature conditions. Therefore, numerous attempts have been made using several approaches (such as regressions and machine learning) to accurately develop models for predicting the Pb. However, some previous models did not study the trend analysis to prove the correct relationships between inputs and outputs to show the proper physical behavior. Thus, this study aims to build a robust and more accurate model to predict the Pb using the adaptive neuro-fuzzy inference system (ANFIS) and trend analysis approaches for the first time. More than 700 global datasets have been used to develop and validate the model to robustly and accurately predict the Pb. The proposed ANFIS model is compared with 21 existing models using statistical error analysis such as correlation coefficient (R), standard deviation (SD), average absolute percentage relative error (AAPRE), average percentage relative error (APRE), and root mean square error (RMSE). The ANFIS model shows the proper relationships between independent and dependent parameters that indicate the correct physical behavior. The ANFIS model outperformed all 21 models with the highest R of 0.994 and the lowest AAPRE, APRE, SD, and RMSE of 6.38%, -0.99%, 0.074 psi, and 9.73 psi, respectively, as the first rank model. The second rank model has the R, AAPRE, APRE, SD, and RMSE of 0.9724, 9%, -1.58%, 0.095 psi, and 13.04 psi, respectively. It is concluded that the proposed ANFIS model is validated to follow the correct physical behavior with higher accuracy than all studied models. 2022 Alakbari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    DOI/handle
    http://dx.doi.org/10.1371/journal.pone.0272790
    http://hdl.handle.net/10576/45402
    Collections
    • Chemical Engineering [‎1195‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video