• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 4: Water, Environment, and Climate Change
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 4: Water, Environment, and Climate Change
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical Simulation of Climate Change Impacts on the Coast of Oman

    Thumbnail
    View/Open
    151.pdf (521.8Kb)
    Date
    2023
    Author
    Etri, Talal
    Al-Rawas, Ghazi
    Sana, Ahmad
    Nikoo, Mohammad Reza
    Metadata
    Show full item record
    Abstract
    It is well known that there is an apparent increase in the intensity and frequency of extreme weather events, such as tropical cyclones (IPCC, 2023). This will lead to a significant effect not just on the infrastructure and the economic activities but also on the coastal environments. On the other hand, an increase in the population along the coastal areas in such a country as the Sultanate of Oman will also increase the risk and the hazard. It has been noticed extremely heavy rainfall during the most recent tropical cyclone, Shaheen (October 3 2021). It is also recorded along the Omani coast's extremely high waves during this storm event. Some other tropical cyclones in the past also indicated an essential effect on the Omani coast (Shawky et al., 2021). In this regard, the development of a fundamental understanding of the hydrodynamic behaviour along the coastal system during these events has been necessary. Moreover, the tropical cyclone track and wind speeds have been recorded only for a few temporal spans. This leads to better reliable estimations of such a kind of event. The state-of-the-art process-based numerical model will be utilized to hind cast the hydrodynamic developments from several tropical cyclone events along the Omani coast. A well-calibrated and validated flow model has been set up using Deft3D, a world leader's software (Lesser et al., 2004). Furthermore, the impact of wind-induced waves has been investigated using the SWAN wave model (Booij et al., 1999; Ris et al., 1999). In this paper, four well-known tropical cyclones in the Indian Ocean will be simulated. The four tropical cyclones were selected due to their historical significance and the amount of destruction they caused on the Omani coast. The investigation results showed significant tropical cyclones' effects on the Omani coasts due to their intensity and the cyclones' pattern. Overall, the numerical models that are showing good descriptions of climate change can be valuable tools for comprehending and predicting the influences of climate change on the Omani coast and can be employed to support in the decision-making.
    DOI/handle
    http://dx.doi.org/10.29117/cic.2023.0151
    http://hdl.handle.net/10576/47105
    Collections
    • Theme 4: Water, Environment, and Climate Change [‎40‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video